Recognition by prime graph of the almost simple group PGL(2, 25)

author

  • A. Mahmoudifar Department of Mathematics, Tehran-North Branch, Islamic Azad University, Tehran, Iran
Abstract:

Throughout this paper, every groups are finite. The prime graph of a group $G$ is denoted by $Gamma(G)$. Also $G$ is called recognizable by prime graph if for every finite group $H$ with $Gamma(H) = Gamma(G)$, we conclude that $Gcong H$. Until now, it is proved that if $k$ is an odd number and $p$ is an odd prime number, then $PGL(2,p^k)$ is recognizable by prime graph. So if $k$ is even, the recognition by prime graph of $PGL(2,p^k)$, where $p$ is an odd prime number, is an open problem. In this paper, we generalize this result and we prove that the almost simple group $PGL(2,25)$ is recognizable by prime graph.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Recognition of the group $G_2(5)$ by the prime graph

Let $G$ be a finite group. The prime graph of $G$ is a graph $Gamma(G)$ with vertex set $pi(G)$, the set of all prime divisors of $|G|$, and two distinct vertices $p$ and $q$ are adjacent by an edge if $G$ has an element of order $pq$. In this paper we prove that if $Gamma(G)=Gamma(G_2(5))$, then $G$ has a normal subgroup $N$ such that $pi(N)subseteq{2,3,5}$ and $G/Nequiv G_2(5)$.

full text

On some Frobenius groups with the same prime graph as the almost simple group ${ {bf PGL(2,49)}}$

The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ is unrecognizable by prime graph if there is a finite group $H$ with $Gamma(H)=Gamma(G)$, in while $Hnotcong G$. In this paper, we consider finite groups with the same prime gr...

full text

Characterizations of the simple group $D_{n}(3)$ by prime graph and spectrum

We prove that $D_n(3)$, where $ngeq6$ is even, is uniquely determined by its prime graph. Also, if $G$ is a finite group with the same prime graph as $D_4(3)$, then $Gcong D_4(3), B_3(3), C_3(3)$ or $G/O_2(G)cong {rm Aut}({}^2B_2(8))$.

full text

Groups with the Same Prime Graph as an Almost Sporadic Simple Group

Let G be a finite group. We denote by Γ(G) the prime graph of G. Let S be a sporadic simple group. M. Hagie in (Hagie, M. (2003), The prime graph of a sporadic simple group, Comm. Algebra, 31: 44054424) determined finite groups G satisfying Γ(G) = Γ(S). In this paper we determine finite groups G such that Γ(G) = Γ(A) where A is an almost sporadic simple group, except Aut(McL) and Aut(J2).

full text

Simple groups with the same prime graph as $D_n(q)$

Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...

full text

2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph

Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 05  issue 01

pages  63- 66

publication date 2016-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023